Ulrich ideals with smallest number of generators

Naoki Endo

Tokyo University of Science

based on the recent works jointly with

S. Goto, S.-i. Iai, and N. Matsuoka

The 42nd Symposium on Commutative Algebra

November 23, 2021

1. Introduction

This talk is based on the recent researches below.

- N. Endo and S. Goto, Ulrich ideals in numerical semigroup rings of small multiplicity, arXiv:2111.00498
- N. Endo, S. Goto, S.-i. Iai, and N. Matsuoka, Ulrich ideals in the ring k[[t⁵, t¹¹]], arXiv:2111.01085

Problem 1.1

Determine all the Ulrich ideals in a given CM local ring.

What is an Ulrich ideal?

- In 1971, J. Lipman investigated stable maximal ideal in a CM local ring.
- In 2014, S. Goto, K. Ozeki, R. Takahashi, K.-i. Watanabe, K.-i. Yoshida modified the notion of stable maximal ideal, which they call an Ulrich ideal.

Let

- (A, \mathfrak{m}) be a CM local ring with $d = \dim A$.
- √I = m, I contains a parameter ideal Q of A as a reduction (i.e. Iⁿ⁺¹ = QIⁿ for some n ≥ 0)

Definition 1.2 (Goto-Ozeki-Takahashi-Watanabe-Yoshida, 2014) We say that *I* is an <u>Ulrich ideal of A</u>, if (1) $I \supseteq Q$, $I^2 = QI$, and (2) I/I^2 is A/I-free.

Note that

• (1)
$$\iff$$
 $\operatorname{gr}_{I}(A) = \bigoplus_{n \geq 0} I^{n} / I^{n+1}$ is a CM ring with $\operatorname{a}(\operatorname{gr}_{I}(A)) = 1 - d$.

• If $I = \mathfrak{m}$, then (1) \iff A has minimal multiplicity e(A) > 1.

• (2) and $I \supseteq Q \implies \mathsf{pd}_A I = \infty$ (Ferrand, Vasconcelos, 1967)

Assume that $I^2 = QI$. Then the exact sequence

$$0 \rightarrow Q/QI \rightarrow I/I^2 \rightarrow I/Q \rightarrow 0$$

of A/I-modules shows

$$I/I^2$$
 is A/I -free $\iff I/Q$ is A/I -free.

Therefore, if I is an Ulrich ideal of A, then

so that

$$d+1 \leq \mu_A(I) \leq d + r(A).$$

Hence, when A is a Gorenstein ring,

every Ulrich ideal I is generated by d + 1 elements (if it exists).

Image: A matrix

For every Ulrich ideal I of A, we have

Theorem 1.3 (Goto-Takahashi-T, 2015)

 $\operatorname{Ext}_{A}^{i}(A/I, A)$ is A/I-free for $\forall i \in \mathbb{Z}$.

Hence

$$\mu_A(I) = d + 1 \quad \Longleftrightarrow \quad \operatorname{G-dim}_A A/I < \infty.$$

This shows if A is G-regular, then $\mu_A(I) \ge d + 2$.

Consequently, if I is an Ulrich ideal of A with $\mu_A(I) = d + 1$, then

- A/I is Gorenstein \iff A is Gorenstein,
- I is a totally reflexive A-module,
- $pd_A I = \infty$, and

the minimal free resolution of I has a very restricted form.

Image: Image:

In what follows, assume d = 1 and I is an Ulrich ideal of A with $\mu_A(I) = 2$. Write I = (a, b), where $a, b \in A$ and Q = (a) is a reduction of I. By taking $c \in I$ with $b^2 = ac$, the minimal free resolution of I has the form

$$\cdots \longrightarrow A^{\oplus 2} \xrightarrow{\begin{pmatrix} -b & -c \\ a & b \end{pmatrix}} A^{\oplus 2} \xrightarrow{\begin{pmatrix} -b & -c \\ a & b \end{pmatrix}} A^{\oplus 2} \xrightarrow{\begin{pmatrix} a & b \end{pmatrix}} I \longrightarrow 0$$

We then have I = J, once

 $\operatorname{Syz}_{A}^{i}(I) \cong \operatorname{Syz}_{A}^{i}(J)$ for some $i \geq 0$

provided I, J are Ulrich ideals of A. (GOTWY, 2014)

Corollary 1.4 (GOTWY, 2014) Suppose that A is a Gorenstein ring. If I, J are Ulrich ideals of A with $mJ \subseteq I \subsetneq J$, then A is a hypersurface.

Naoki Endo (Tokyo University of Science)

Let \mathcal{X}_A be the set of Ulrich ideals in A.

On the other hand

- If A has finite CM representation type, then \mathcal{X}_A is finite. (GOTWY, 2014)
- Suppose that ∃ a fractional canonical ideal K. Set c = A : A[K].
 If A is a non-Gorenstein almost Gorenstein ring, then

 $\mathcal{X}_A \subseteq \{\mathfrak{m}\}$ (GTT, 2015)

If A is a 2-almost Gorenstein ring with minimal multiplicity, then

 $\{\mathfrak{m}\} \subseteq \mathcal{X}_A \subseteq \{\mathfrak{m}, \mathfrak{c}\}$ (Goto-Isobe-T, 2020)

We expect that there is a strong connection between

the behavior of Ulrich ideals and the structure of base rings.

Problem 1.1

Determine all the Ulrich ideals in a given CM local ring.

Question 1.5

How many two-generated Ulrich ideals are contained in a given numerical semigroup ring?

•
$$0 < a_1, a_2, \dots, a_\ell \in \mathbb{Z}$$
 s.t. $gcd(a_1, a_2, \dots, a_\ell) = 1$

•
$$H = \langle a_1, a_2, \dots, a_\ell \rangle = \left\{ \sum_{i=1}^\ell c_i a_i \ \Big| \ 0 \le c_i \in \mathbb{Z} \text{ for all } 1 \le i \le \ell \right\}$$

• $A = k[[H]] = k[[t^{a_1}, t^{a_2}, \dots, t^{a_\ell}]] \subseteq V = k[[t]] = \overline{A}$, where k is a field

•
$$c(H) = \min\{n \in \mathbb{Z} \mid m \in H \text{ for all } m \in \mathbb{Z} \text{ s.t. } m \ge n\}$$

Note that $t^{c(H)}V \subseteq A$.

< □ > < 同 > < 回 > < 回 > < 回 >

2. Method of computation

Previous Method

Let

- (A, \mathfrak{m}) be a Gorenstein local ring with dim A = 1,
- \mathcal{X}_A be the set of Ulrich ideals in A,
- *Y_A* be the set of birational module-finite extensions *B* of *A* s.t. *B* is a Gorenstein ring and μ_A(*B*) = 2.

Then, there exists a bijective correspondence

$$\mathcal{X}_A \rightarrow \mathcal{Y}_A, \quad I \mapsto A^I$$

where

$$A^{I} = \bigcup_{n \ge 0} [I^{n} : I^{n}] = I : I.$$

< 1 k

Let

- V = k[[t]] be the formal power series ring over a field k
- A be a k-subalgebra of V.

We say that

A is a core of
$$V \quad \stackrel{def}{\Longleftrightarrow} \quad t^c V \subseteq A$$
 for some $c \gg 0$.

Example 2.1

- k[[H]] is a core of V,
- $A = k[t^2 + t^3] + t^4 V$ is core, but $A \neq k[[H]]$ for any numerical semigroup H.

Let A be a core of V and suppose $t^c V \subseteq A$ with $c \gg 0$. Then

$$k[[t^c, t^{c+1}, \ldots, t^{2c-1}]] \subseteq A \subseteq V$$

so that V is a birational module-finite extension of A_{\cdot}

Hence, for every core A of V,

• $V = \overline{A}$

- A is a CM complete local domain with dim A = 1
- $V/\mathfrak{n} \cong A/\mathfrak{m}$

where \mathfrak{m} (resp. $\mathfrak{n} = tV$) stands for the maximal ideal of A (resp. V).

Let o(*) denote the n-adic valuation of V, and set

$$H = v(A) = \{ o(f) \mid 0 \neq f \in A \}.$$

Note that

H = v(A) is symmetric \iff A is Gorenstein (Kunz, 1970)

Let I be an Ulrich ideal of A with $\mu_A(I) = 2$. Choose $f, g \in I$ s.t. I = (f, g) and $I^2 = fI$. Then

$$A^{I} = I : I = \frac{I}{f} = A + A \cdot \frac{g}{f}$$

is a core of V.

Theorem 2.2

Let I be an Ulrich ideal in A with $\mu_A(I) = 2$. Then one can choose $f, g \in I$ satisfying the following conditions, where a = o(f), b = o(g), and c = c(H).

(1)
$$I = (f, g)$$
 and $I^2 = fI$.

(2)
$$a, b \in H$$
 and $0 < a < b < a + c$.

(3)
$$b - a \notin H$$
, $2b - a \in H$, and $a = 2 \cdot \ell_A(A/I)$.

(4) If
$$a \ge c$$
, then $e(A) = 2$ and $I = A : V$.

Example 2.3

Let $A = k[[t^2, t^{2\ell+1}]]$ $(\ell \ge 1)$. Then

$$\mathcal{X}_{\mathcal{A}} = \{(t^{2q}, t^{2\ell+1}) \mid 1 \leq q \leq \ell\}.$$

3. Main theorem

Theorem 3.1 (Main theorem)

Let $\ell \geq 7$ be an integer such that $gcd(3, \ell) = 1$ and set $A = k[[t^3, t^{\ell}]]$.

(1) Suppose that $\ell = 3n + 1$ where $n \ge 3$ is odd. Let $q = \frac{n-1}{2}$. Then

$$\mathcal{X}_{A} = \left\{ \left(t^{\ell} + \sum_{j=1}^{q} \alpha_{j} t^{\ell+3j-1}, t^{\ell+3q+2} \right) \middle| \alpha_{1}, \alpha_{2}, \dots, \alpha_{q} \in k \right\}$$
$$\bigcup \left\{ \left(t^{6i} + \sum_{s=0}^{i-1} \alpha_{s} t^{\ell+3s}, t^{\ell+3i} \right) \middle| 1 \le i \le q, \alpha_{0}, \dots, \alpha_{i-1} \in k, \alpha_{0} \neq 0 \right\}$$

(2) Suppose that $\ell = 3n + 1$ where $n \ge 2$ is even. Let $q = \frac{n}{2}$. Then

$$\mathcal{X}_A = \left\{ \left(t^{6i} + \sum_{s=0}^{i-1} \alpha_s t^{\ell+3s}, t^{\ell+3i} \right) \mid 1 \leq i \leq q, \alpha_0, \dots, \alpha_{i-1} \in k, \alpha_0 \neq 0 \right\}.$$

< (17) > <

Theorem 3.1 (continued)

(3) Suppose that $\ell = 3n + 2$ where $n \ge 1$ is odd. Let $q = \frac{n-1}{2}$. Then

$$\mathcal{X}_{A} = \left\{ \left(t^{6i} + \sum_{s=0}^{i-1} \alpha_{s} t^{\ell+3s}, t^{\ell+3i} \right) \ \middle| \ 1 \leq i \leq q, \alpha_{0}, \ldots, \alpha_{i-1} \in k, \alpha_{0} \neq 0 \right\}.$$

(4) Suppose that $\ell = 3n + 2$ where $n \ge 2$ is even. Let $q = \frac{n}{2}$. Then

$$\begin{aligned} \mathcal{X}_A &= \left\{ \left(t^{\ell} + \sum_{j=1}^q \alpha_j t^{\ell+3j-2}, t^{\ell+3q+1} \right) \ \middle| \ \alpha_1, \alpha_2, \dots, \alpha_q \in k \right\} \\ & \bigcup \left\{ \left(t^{6i} + \sum_{s=0}^{i-1} \alpha_s t^{\ell+3s}, t^{\ell+3i} \right) \ \middle| \ 1 \le i \le q, \alpha_0, \dots, \alpha_{i-1} \in k, \alpha_0 \neq 0 \right\}. \end{aligned}$$

Moreover, the coefficients α_i 's in the system of generators of $I \in \mathcal{X}_A$ are uniquely determined for I.

We denote by \mathcal{X}_A^g the set of Ulrich ideals in A generated by monomials in t.

Corollary 3.2

- Let $\ell \geq 7$ be an integer s.t. $gcd(3, \ell) = 1$ and set $A = k[[t^3, t^{\ell}]]$. Then
- (1) $\mathcal{X}_A \neq \emptyset$.
- (2) \mathcal{X}_A is finite \iff k is a finite field.
- (3) $\mathcal{X}_{A}^{g} = \emptyset \qquad \iff \ell = 3n+1 \text{ or } \ell = 3n+2 \text{ for some even integer } n \geq 2$

Example 3.3

Let $A = k[[t^3, t^7]]$. Then

$$\mathcal{X}_{A} = \{(t^{6} + \alpha t^{7}, t^{10}) \mid 0 \neq \alpha \in k\}.$$

Hence, $\#X_A = \#k - 1$ and A does not contain monomial Ulrich ideals.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへの

4. More examples

Example 4.1

We have

$$\begin{split} \mathcal{X}_{k[[t^4,t^{13}]]} &= \{(t^{12} + 2\beta t^{17} + \alpha t^{26}, t^{21} + \beta t^{26}) \mid \alpha, \beta \in k, \ \beta \neq 0\} \\ &\bigcup \{(t^{16} + 2\beta t^{17} + \alpha_2 t^{21} + \alpha_3 t^{26}, t^{25} + \beta t^{26}) \mid \alpha_2, \alpha_3, \beta \in k, \ \beta \neq 0\} \\ &\bigcup \{(t^4 + \alpha t^{13}, t^{26}) \mid \alpha \in k\} \\ &\bigcup \{(t^8 + \alpha_1 t^{13} + \alpha_2 t^{17}, t^{26}) \mid \alpha_1, \alpha_2 \in k\} \\ &\bigcup \{(t^{12} + \alpha_1 t^{13} + \alpha_2 t^{17} + \alpha_3 t^{21}, t^{26}) \mid \alpha_1, \alpha_2, \alpha_3 \in k\} \\ &\bigcup \{(t^{16} + \alpha_1 t^{17} + \alpha_2 t^{21} + \alpha_3 t^{25}, t^{26}) \mid \alpha_1, \alpha_2, \alpha_3 \in k\} \\ &\bigcup \{(t^{20} + \alpha_1 t^{21} + \alpha_2 t^{25} + \alpha_3 t^{29}, t^{26} + \beta t^{29}) \mid \alpha_1, \alpha_2, \alpha_3, \beta \in k, \ \alpha_1^3 = 2\beta\} \\ &\bigcup \{(t^{24} + \alpha_1 t^{25} + \alpha_2 t^{29} + \alpha_3 t^{33}, t^{26} + \beta_1 t^{29} + \beta_2 t^{33}) \mid \alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2 \in k, \ \alpha_1 = 0 \text{ if } ch k = 2; \ \alpha_1 = \alpha_2 = \beta_1 = \beta_2 = 0 \text{ if } ch k \neq 2\}. \end{split}$$

For each $I \in \mathcal{X}_{k[[t^4, t^{13}]]}$, the elements of k which appear in the listed expression are uniquely determined by I.

Naoki Endo (Tokyo University of Science)

5. three-generated numerical semigroup rings

•
$$0 < a, b, c \in \mathbb{Z}$$
 s.t. $gcd(a, b, c) = 1$ and set $H = \langle a, b, c \rangle$

•
$$A = k[[H]] = k[[t^a, t^b, t^c]] \subseteq V = k[[t]]$$

• $\mathfrak{m} = (t^a, t^b, t^c)$

For a finitely generated A-module M, let

$$\mathcal{P}^A_M(t) = \sum_{n=0}^\infty eta^A_n(M) t^n \in \mathbb{Z}[[t]]$$

where $\beta_n^A(M)$ denotes the *n*-th Betti number of *M*.

Theorem 5.1

Suppose that A = k[[H]] is not a Gorenstein ring. Then

$$eta_n^A(A/\mathfrak{m})=egin{cases} 1&(n=0)\ 3\cdot 2^{n-1}&(n>0) \end{bmatrix}$$
 and $P^A_{A/\mathfrak{m}}(t)=rac{1+t}{1-2t}.$

18 / 20

Corollary 5.2 (cf. Gasharov-Peeva-Welker, 2000)

Every three-generated non-Gorenstein numerical semigroup ring is Golod.

Note that

• every Golod local ring which is not a hypersurface must be *G*-regular. (Avramov-Martsinkovsky, 2002)

Corollary 5.3

Every three-generated non-Gorenstein numerical semigroup ring contains no Ulrich ideals generated by two elements.

Thank you for your attention.

< □ > < 同 >

э